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Abstract The maximization of the efficiency of a hybrid two-step method for the
numerical solution of the radial Schrödinger equation and related problems with peri-
odic or oscillating solutions via the procedure of vanishing of the phase-lag and its
derivatives is studied in this paper. More specifically, we investigate the vanishing of
the phase-lag and its first and second derivatives and how this disappearance maxi-
mizes the efficiency of the hybrid two-step method.
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1 Introduction

In theoretical physics and chemistry, material sciences, quantum mechanics and
quantum chemistry, electronics etc., many problems can be expressed via the radial
time independent Schrödinger equation (see for example [1–4]), which can be pre-
sented with the boundary value problem:

y′′(x) =
[
l(l + 1)/x2 + V (x) − k2

]
y(x). (1)

For the above model (1) we give the following definitions:

– The function W (x) = l(l + 1)/x2 + V (x) is called the effective potential. This
satisfies W (x) → 0 as x → ∞

– The quantity k2 is a real number denoting the energy
– The quantity l is a given integer representing the angular momentum
– V is a given function which denotes the potential.

The boundary conditions are:

y(0) = 0 (2)

and a second boundary condition, for large values of x , determined by physical con-
siderations.

On the algorithmic development of efficient, fast and reliable methods for the
approximate solution of the radial Schrödinger equation, much research has been
done the last decades (see for example [5–87]. In the following we mention some
bibliography:

– Phase-fitted methods and numerical methods with minimal phase-lag of Runge-
Kutta and Runge-Kutta Nyström type have been developed in [5–8].

– In [9–14] exponentially and trigonometrically fitted Runge-Kutta and Runge-Kutta
Nyström methods are obtained.

– Multistep phase-fitted methods and multistep methods with minimal phase-lag are
developed in [18–37].

– Symplectic integrators are studied in [38–59].
– Exponentially and trigonometrically multistep methods have been developed in

[60–80].
– Nonlinear methods have been studied in [81,82].
– Review papers have been written in [83–87].
– Special issues and Symposia in International Conferences have been created on

this subject (see [88–94]).

In this paper we will study the development of efficient numerical methods for the
approximate solution of initial-value problems with periodical or oscillating behavior
of the solutions. The construction of the new methods is based on the requirement of
vanishing the phase-lag and its first and second derivatives.

We will study the efficiency of the new developed methods via:
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– the error analysis
– the stability analysis
– the application of the new methods in the numerical solution of the one-dimen-

sional Schrödinger equation with specific potential.

More specifically, we will develop a family of implicit symmetric two-step hybrid
methods of sixth algebraic order. The construction of the new family of methods is
based on the requirement of vanishing the phase-lag and its first and second deriva-
tives. We will study the stability and the error of the new proposed method. Finally,
we will apply the new obtained method to the resonance problem. This is one of the
most difficult problems arising from the radial Schrödinger equation. The paper is
organized as follows.

– The theory of the new methodology is presented in Sect. 2.
– The development of the new method is presented in Sect. 3.
– In Sect. 4 we will present the error analysis.
– The stability properties of the new obtained method are presented in Sect. 5.
– The numerical results are presented in Sect. 6.
– Finally, a discussion on remarks and conclusions is presented in Sect. 7.

2 Phase-lag analysis of symmetric multistep methods

For the approximate solution of the initial value problem

q ′′ = f (x, q) (3)

consider a multistep method with m steps which can be used over the equally spaced
intervals {xi }m

i=0 ∈ [a, b] and h = |xi+1 − xi |, i = 0(1)m − 1.
If the method is symmetric, then ai = am−i and bi = bm−i , i = 0(1)m

2 .
When a symmetric 2m-step method (i.e. a method for i = −m(1)m) is applied to

the scalar test equation

q ′′ = −ω2q (4)

a difference equation of the form

Am(H) qn+m + · · · + A1(H) qn+1 + A0(H) qn + A1(H) qn−1

+ · · · + Am(H) qn−m = 0 (5)

is obtained, where H = ω h, h is the step length and A0(H), A1(H), . . ., Am(H) are
polynomials of H = ω h.

The characteristic equation associated with (5) is given by:

Am(H) λm + · · · + A1(H) λ + A0(H) + A1(H) λ−1 + · · · + Am(H) λ−m = 0 (6)
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Theorem 1 [21] and [24] The symmetric 2m-step method with characteristic equation
given by (6) has phase-lag order q and phase-lag constant c given by:

− c H p+2 + O
(

H p+4
)

= 2 Am (H) cos(m H)+···+2 A j (H) cos( j H)+···+A0(H)

2 m2 Am (H)+···+2 j2 A j (H)+···+2 A1(H)
(7)

The formula mentioned in the above theorem is a direct method for the computation
of the phase-lag of any symmetric 2m- step method.

3 The family of hybrid methods

3.1 The general family of methods

Consider the following family of hybrid two-step methods (see [36]):

q̂n+1 = 2 qn − qn−1 + h2 fn

q̃n+1 = 2 qn − qn−1 + h2

12

(
f̂n+1 + 10 fn + fn−1

)

q̄n− 1
2

= 1

52
(3 q̃n+1 + 20 qn + 29 qn−1)

+ h2

4992

(
41 f̂n+1 − 682 fn − 271 fn−1

)

q̄n+ 1
2

= 1

104
(5 q̃n+1 + 146 qn − 47 qn−1)

+ h2

4992

(
−59 f̂n+1 + 1438 fn + 253 fn−1

)

qn+1 − 2 qn + qn−1 = h2
[

b0

(
f̃n+1 + fn−1

)
+ b1

(
f̄n+ 1

2
+ f̄n− 1

2

)
+ b2 fn

]

(8)

In the above family:

– the coefficients b0, b1 and b2 are free parameters,
– h is the step size of the integration,
– n is the number of steps, i.e. qn is the approximation of the solution on the point

xn and xn = x0 + n h and
– x0 is the initial value point.

3.2 The new hybrid method of the family with vanished phase-lag and its first and
second derivatives

Let us consider the method (8)
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If we apply the method (8) to the scalar test equation (4) we obtain the difference
equation (5) with m = 1 and A j (H) , j = 0, 1 given by:

A0 (H) = −2 + 2 b0 H2 − b0 H4 + 1

12
H6 b0 + 2 b1 H2 − 1

4
b1 H4

+ 1

192
H6 b1 + H2 b2, A1 (H) = 1 (9)

We require the above hybrid method to have its phase-lag vanished. Using the
formulae (7) (for m = 1) and (9), we have the following equation:

PL = cos (H) − 1 + b0 H2 − 1

2
b0 H4 + 1

24
H6 b0

+b1 H2 − 1

8
b1 H4 + 1

384
H6 b1 + 1

2
H2 b2 = 0 (10)

Requiring the method to have the first derivative of the phase-lag vanished as well,
we have the equation

DPL = − sin (H) + 2 b0 H − 2 b0 H3 + 1

4
H5 b0 + 2 b1 H − 1

2
b1 H3

+ 1

64
H5 b1 + H b2 = 0 (11)

where DPL is the first derivative of the phase-lag.
Finally, demanding the method to have the second derivative of the phase-lag van-

ished as well, we have the equation

DDPL = − cos (H) + 2 b0 − 6 b0 H2 + 5

4
b0 H4 + 2 b1 − 3

2
b1 H2

+ 5

64
b1 H4 + b2 = 0 (12)

where DDPL is the second derivative of the phase-lag.
Demanding now the coefficients of the new proposed hybrid method to satisfy the

Eqs. (10)–(12), we obtain the following coefficients of the new developed method:

b0 = 1

6

T0

H6

b1 = 1

3

T1

H6

b2 = 1

4

T2

H6 (13)

where
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T0 = 192 − 12 H2 − 120 H sin (H) + 36 H2 cos (H)

+7 H3 sin (H) − H4 cos (H) − 192 cos (H)

T1 = 8 H4 cos (H) − 56 H3 sin (H) − 144 H2 cos (H)

+96 H2 + 240 H sin (H) − 384 + 384 cos (H)

T2 = 768 − 768 cos (H) + 24 H4 − 240 H2 + 336 H2 cos (H) − 480 H sin (H)

+140 H3 sin (H) − 44 H4 cos (H) − 9 H5 sin (H) + H6 cos (H)

For some values of |ω| the formulae given by (13) are subject to heavy cancellations.
In this case, the following Taylor series expansions should be used:

b0 = 1

60
− 1

420
H2 + 31

302400
H4 − 1

467775
H6 + 23

871782912
H8

− 47

217945728000
H10 + 41

32665171968000
H12 − 1

182760066720000
H14

+ 193

10407414146088960000
H16 − 1

19886166722219212800
H18 + · · ·

b1 = 4

15
+ 1

105
H2 − 19

18900
H4 + 7

267300
H6 − 97

272432160
H8

+ 167

54486432000
H10 − 263

14291012736000
H12 + 389

4751761734720000
H14

− 61

216821128043520000
H16 + 83

107716736412020736000
H18 + · · ·

b2 = 13

30
− 1

70
H2 + 13

7200
H4 − 13

133056
H6 + 8401

3632428800
H8

− 1117

36324288000
H10 + 70349

266765571072000
H12 − 80419

50685458503680000
H14

+ 22123

3122224243826688000
H16 − 1613

65949022293073920000
H18 + · · · (14)

The behavior of the coefficients is given in the following Fig. 1.
The local truncation error of the new proposed method (mentioned as N M) is given

by:

LTEN M = − h8

20160

(
q8

n + 3 ω2q6
n + 3 ω4q4

n + ω2q6
n

)
+ O

(
h10

)
. (15)

4 Error analysis

We will study the following methods:
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Fig. 1 Behavior of the coefficients of the new proposed method given by (13) for several values of H = ω h

4.1 Classical method (i.e. the method (8) with constant coefficients)

LTEC L = − h8

20160
q(8)

n + O
(

h10
)

(16)

4.2 New method with vanished phase-lag and its first and second derivatives
(developed in Sect. 3.2)

LTEN M = − h8

20160

(
q8

n + 3 ω2q6
n + 3 ω4q4

n + ω2q6
n

)
+ O

(
h10

)
(17)

In order to study the error of the above mentioned methods, we follow the procedure
mentioned below:

– The radial time independent Schrödinger equation is of the form
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q ′′ (x) = f (x) q (x) (18)

– Based on the paper of Ixaru and Rizea [60], the function f (x) can be written in
the form:

f (x) = g(x) + G (19)

where g(x) = V (x) − Vc = g, where Vc is the constant approximation of the
potential and G = ω2 = Vc − E .

– We express the derivatives q(i)
n , i = 2, 3, 4, . . . , which are terms of the local trun-

cation error formulae, in terms of the Eq. (19). The expressions are presented as
polynomials of G.

– Finally, we substitute the expressions of the derivatives, produced in the previous
step, into the local truncation error formulae.

We use the procedure mentioned above and the formulae:

q(2)
n = (V (x) − Vc + G) q(x)

q(4)
n =

(
d2

dx2 V (x)

)
q(x) + 2

(
d

dx
V (x)

) (
d

dx
q(x)

)

+ (V (x) − Vc + G)

(
d2

dx2 q(x)

)

q(6)
n =

(
d4

dx4 V (x)

)
q(x) + 4

(
d3

dx3 V (x)

) (
d

dx
q(x)

)

+3

(
d2

dx2 V (x)

) (
d2

dx2 q(x)

)
+ 4

(
d

dx
V (x)

)2

q(x) (20)

+6 (V (x) − Vc + G)

(
d

dx
V (x)

) (
d

dx
q(x)

)

+4 (V (x) − Vc + G) q(x)

(
d2

dx2 V (x)

)

+ (V (x) − Vc + G)2
(

d2

dx2 q(x)

)
. . .

we obtain the expressions mentioned in the Appendix.
We consider two cases in terms of the value of E :

1. The Energy is close to the potential, i.e., G = Vc − E ≈ 0. Consequently, the
free terms of the polynomials in G are considered only. Thus, for these values of
G, the methods are of comparable accuracy. This is because the free terms of the
polynomials in G are the same for the cases of the classical method and of the
methods with vanished the phase-lag and its derivatives.

2. G � 0 or G � 0. Then |G| is a large number.

Therefore, we have the following asymptotic expansions of the Local Truncation
Errors:
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4.3 Classical method

LTEC L = h8
(

− 1

20160
q (x) G4 + · · ·

)
+ O

(
h10

)
(21)

4.4 New method with vanished phase-lag and its first derivative (developed in
Sect. 3.2)

LTEN M = h8
[(

1

5040

(
d2

dx2 g (x)

)
q (x)

)
G2 + · · ·

]
+ O

(
h10

)
(22)

From the above equations we have the following theorem:

Theorem 2 For the Classical Hybrid Two-Step Method the error increases as the
fourth power of G. For the new method with vanished phase-lag and its first and sec-
ond derivatives (developed in Sect. 3.2), the error increases as the second power of
G. So, for the numerical solution of the time independent radial Schrödinger equation
the new method with vanished phase-lag and its first and second derivatives is much
more efficient, especially for large values of |G| = |Vc − E |.

5 Stability analysis

Applying the new method to the scalar test equation:

u′′ = −z2 u, (23)

we obtain the following difference equation:

A1 (v, H) (un+1 + un−1) + A0 (v, H) un = 0 (24)

where

A0 (v, H) = 1

4

T3

H6 , A1 (v, H) = 1 (25)

where T3 = −8H6 + 24v2 H4 + 8v6 − 5v6 H sin (H) + 24H2 cos (H) v4 +
v6 H2 cos (H) + 14H3 sin (H) v4 − 2H4 cos (H) v4 − 24H4 cos (H) v2 − 9v2 H5

sin (H) + v2 H6 cos (H) − 24H2v4 − 8v6 cos (H) and H = ωh, v = z h.
The corresponding characteristic equation is given by:

A1 (v, H)
(
λ2 + 1

)
+ A0 (v, H) λ = 0 (26)
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Fig. 2 v − H plane of the the new developed method

Definition 1 (see [15]) A symmetric 2m-step method with the characteristic equation
given by (6) is said to have an interval of periodicity

(
0, v2

0

)
if, for all v ∈ (

0, v2
0

)
, the

roots λi , i = 1, 2 satisfy

λ1,2 = e±i ζ(v), |λi | ≤ 1, i = 3, 4 (27)

where ζ(v) is a real function of z h and v = z h.

Definition 2 (see [15]) A method is called P-stable if its interval of periodicity is
equal to (0,∞).

Definition 3 A method is called singularly almost P-stable if its interval of periodicity
is equal to (0,∞) − K 1 only when the frequency of the phase fitting is the same as
the frequency of the scalar test equation, i.e., v = H .

In Fig. 2 we present the H − v plane for the method developed in this paper. The
shadowed area denotes the H − v region where the method is stable, while the white
area denotes the region where the method is unstable.

Remark 1 For the solution of the Schrödinger type equations the frequency of the
phase fitting is equal to the frequency of the scalar test equation. So, it is necessary to
observe the surroundings of the first diagonal of the H − v plane.

The interval of periodicity of the new method developed in Sect. 3.2 is equal to:
(0, 9.869604404) in the case that the frequency of the scalar test equation is equal with

1 Where K is a set of distinct points.
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Table 1 Comparative stability
analysis for the methods
mentioned in Sect. 5

Method Interval of periodicity

CL (0, 7.571916416)

NM(see Sect. 3.2) (0, 9.869604404)

the frequency of phase fitting, i.e., in the case that v = H (i.e., see the surroundings
of the first diagonal of the H − v plane).

From the above analysis we have the following theorem:

Theorem 3 The method developed in Sect. 3.2 is of sixth algebraic order, has the
phase-lag and its first and second derivatives equal to zero and has an interval of
periodicity equals to: (0, 9.869604404).

Based on the analysis presented above, we studied the interval of periodicity of the
classical method and the method developed in this paper. The results are presented in
the Table 1.

6 Numerical results

The efficiency of the new developed method is studied via its application to the one-
dimensional time-independent Schrödinger equation (1).

In order to apply the new developed method to the radial Schrödinger equation,
the value of parameter ω is needed. In (1), the parameter ω is given by (for the case
l = 0):

ω =
√

|V (x) − k2| = √|V (x) − E | (28)

where V (x) is the potential and E is the energy.

6.1 Woods-Saxon potential

We use as a potential the well known Woods-Saxon potential which can be written as

V (x) = u0

1 + y
− u0 y

a (1 + y)2 (29)

with y = exp
[

x−X0
a

]
, u0 = −50, a = 0.6, and X0 = 7.0.

The behavior of Woods-Saxon potential is shown in Fig. 3.
It is well known that for some potentials, such as the Woods-Saxon potential, the

definition of parameter ω is given not as a function of x but as based on some critical
points which have been defined from the investigation of the appropriate potential (see
for details [86]).
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Fig. 3 The Woods-Saxon potential

For the purpose of obtaining our numerical results, it is appropriate to choose v as
follows (see for details [1] and [60]):

ω =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

√−50 + E, for x ∈ [0, 6.5 − 2h],√−37.5 + E, for x = 6.5 − h√−25 + E, for x = 6.5√−12.5 + E, for x = 6.5 + h√
E, for x ∈ [6.5 + 2h, 15]

(30)

For example, in the point of the integration region x = 6.5, the value of ω is equal
to:

√−25 + E . So, H = ω h = √−25 + E h. In the point of the integration region
x = 6.5 − 3 h, the value of ω is equal to:

√−50 + E, etc.

6.2 Radial Schrödinger equation: the resonance problem

We consider the numerical solution of the radial Schrödinger equation (1) in the
well-known case of the Woods-Saxon potential (29). In order to solve this problem
numerically, we must approximate the true (infinite) interval of integration by a finite
interval. For the purpose of our numerical illustration, we take the domain of inte-
gration as x ∈ [0, 15]. We consider Eq. (1) in a rather large domain of energies, i.e.,
E ∈ [1, 1000].

In the case of positive energies, E = k2, the potential decays faster than the term
l(l+1)

x2 and the Schrödinger equation effectively reduces to

y′′ (x) +
(

k2 − l(l + 1)

x2

)
y (x) = 0 (31)
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for x greater than some value X .
The above equation has linearly independent solutions kx jl (kx) and kxnl (kx),

where jl (kx) and nl (kx) are the spherical Bessel and Neumann functions respec-
tively. Thus, the solution of Eq. (1) (when x → ∞), has the asymptotic form

y (x) ≈ Akx jl (kx) − Bkxnl (kx)

≈ AC

[
sin

(
kx − lπ

2

)
+ tan dl cos

(
kx − lπ

2

)]
(32)

where δl is the phase shift that may be calculated from the formula

tan δl = y (x2) S (x1) − y (x1) S (x2)

y (x1) C (x1) − y (x2) C (x2)
(33)

for x1 and x2 distinct points in the asymptotic region (we choose x1 as the right hand
end point of the interval of integration and x2 = x1 − h) with S (x) = kx jl (kx) and
C (x) = −kxnl (kx). Since the problem is treated as an initial-value problem, we need
y j , j = 0, 1 before starting a two-step method. From the initial condition, we obtain
y0. The value y1 is obtained by using high order Runge-Kutta-Nyström methods(see
[95] and [96]). With these starting values, we evaluate at x2 of the asymptotic region
the phase shift δl .

For positive energies, we have the so-called resonance problem. This problem con-
sists either of finding the phase-shift δl or finding those E , for E ∈ [1, 1000], at which
δl = π

2 . We actually solve the latter problem, known as the resonance problem.
The boundary conditions for this problem are:

y(0) = 0, y(x) = cos
(√

Ex
)

for large x . (34)

We compute the approximate positive eigenenergies of the Woods-Saxon resonance
problem using:

– The eighth order multi-step method developed by Quinlan and Tremaine [16],
which is indicated as Method QT8.

– The tenth order multi-step method developed by Quinlan and Tremaine [16], which
is indicated as Method QT10.

– The twelfth order multi-step method developed by Quinlan and Tremaine [16],
which is indicated as Method QT12.

– The fourth algebraic order method of Chawla and Rao with minimal phase-lag
[20], which is indicated as Method MCR4.

– The exponentially-fitted method of Raptis and Allison [61], which is indicated as
Method MRA.

– The hybrid sixth algebraic order method developed by Chawla and Rao with min-
imal phase-lag [19], which is indicated as Method MCR6.
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Fig. 4 Accuracy (Digits) for several values of C PU Time (in seconds) for the eigenvalue E2 =
341.495874. The nonexistence of a value of Accuracy (Digits) indicates that for this value of CPU, Accuracy
(Digits) is less than 0

– The classical form of the sixth algebraic order method developed in Sect. 3.2,
which is indicated as Method NMCL.2

– The new developed hybrid two-step method with vanished phase-lag and its first
and second derivatives (obtained in Sect. 3.2), which is indicated as Method NM.

The computed eigenenergies are compared with reference values. 3 In Figs. 4 and 5,
we present the maximum absolute error Errmax = |log10 (Err) | where

Err = |Ecalculated − Eaccurate| (35)

of the eigenenergies E2 = 341.495874 and E3 = 989.701916 respectively, for several
values of CPU time (in seconds). We note that the CPU time (in seconds) counts the
computational cost for each method.

2 With the term classical we mean the method of Sect. 3.2 with constant coefficients.
3 The reference values are computed using the well known two-step method of Chawla and Rao [19] with
small step size for the integration.
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Fig. 5 Accuracy (Digits) for several values of C PU Time (in seconds) for the eigenvalue E3 =
989.701916. The nonexistence of a value of Accuracy (Digits) indicates that for this value of CPU, Accuracy
(Digits) is less than 0

7 Conclusions

The purpose of this paper was the maximization of the efficiency of a hybrid two-step
method for the approximate solution of the one-dimensional Schrödinger equation
and related problems. We have presented the procedure with which the methodology
of vanishing of the phase-lag and its first and second derivatives maximizes the effi-
ciency of the new obtained numerical method. As a result of the application of the
above mentioned procedure, we have produced a hybrid two-step method that is very
efficient on any problem with oscillating solutions or problems with solutions contain
the functions cos and sin or any combination of them.

From the results presented above, we can make the following remarks:

1. The classical form of the sixth algebraic order method developed in Sect. 3.2,
which is indicated as Method NMCL is of the same efficiency with the fourth
algebraic order method of Chawla and Rao with minimal phase-lag [20], which is
indicated as Method MCR4. Both the above mentioned methods are more efficient
than the exponentially-fitted method of Raptis and Allison [61], which is indicated
as Method MRA.

2. The tenth order multi-step method developed by Quinlan and Tremaine [16],
which is indicated as Method QT10 is more efficient than the fourth alge-
braic order method of Chawla and Rao with minimal phase-lag [20], which is
indicated as Method MCR4. The Method QT10 is also more efficient than the
eighth order multi-step method developed by Quinlan and Tremaine [16], which
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is indicated as Method QT8. Finally, the Method QT10 is also more efficient
than the hybrid sixth algebraic order method developed by Chawla and Rao with
minimal phase-lag [19], which is indicated as Method MCR6.

3. The twelfth order multi-step method developed by Quinlan and Tremaine [16],
which is indicated as Method QT12 is more efficient than the tenth order multi-step
method developed by Quinlan and Tremaine [16], which is indicated as Method
QT10.

4. Finally, the New developed hybrid two-step method with vanished phase-lag and
its first and second derivatives (obtained in Sect. 3.2), which is indicated as Method
NM is the most efficient one.

All computations were carried out on a IBM PC-AT compatible 80486 using double
precision arithmetic with 16 significant digits accuracy (IEEE standard).

Appendix

Classical method
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New method with vanished phase-lag and its first derivative (developed in Sect. 3.2)
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